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ABSTRACT
In the scope of the 7th Lifelog Search Challenge (LSC’24), we present
the 4th iteration of LifeGraph, a multimodal knowledge-graph ap-
proach with data augmentations using Vision-Language Models
(VLM). We extend the LifeGraph model presented in former LSC
challenges by event-based clustering using temporal and spatial re-
lations as well as information extracted from descriptions of Lifelog
image captions produced by VLMs.

CCS CONCEPTS
• Information systems → Users and interactive retrieval; Spe-
cialized information retrieval;Multimedia and multimodal re-
trieval.
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1 INTRODUCTION
Lifelogs are inherently multi-modal collections of autobiographical
data with various internal and external relations and are, there-
fore, well suited to be represented in a multi-modal graph structure.
Relying only on information that can easily be represented in a
structured form, however, limits the available retrieval options.
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Modern semantic embedding methods, combined with classical
vector space retrieval techniques, can overcome such limitations
by enabling search for concepts and scenarios that are not preemp-
tively annotated or even annotatable.

In this paper, we present our contribution to the 2024 Lifelog
Search Challenge: LifeGraph 4. Since the dataset used in 2024 [4]
is the same as in the previous two years [3], we build upon the
2023 version of our graph-based approach [12] by re-using some of
the fundamental structures while removing some previous struc-
tures that turned out not to be beneficial. We augment the graph
with information extracted from the images using a state-of-the-art
Vision-Language Model and introduce some modified querying and
result presentation schemes.

The remainder of this paper is structured as follows: Section 2
describes our data cleaning and pre-processing steps and graph
construction method. Section 3 then gives an overview of the avail-
able querying mechanisms, and Section 4 describes the interaction
modes available to a user. In Section 5, we show the results of some
preliminary experiments based on queries from 2023 before we
conclude the paper in Section 6.

2 DATA PRE-PROCESSING
Our graph construction process involves several data cleaning and
feature extraction steps, which are outlined in the following.

2.1 Data Cleaning
As indicated in previous implementations [1, 16], a large portion
of the dataset consists of blurry, obstructed, or dark images, which
are not helpful for the challenge’s retrieval tasks. Filtering out
these unhelpful images could ameliorate our system’s performance.
However, due to the redaction of the dataset’s images for privacy
preservation [4], characterizing an image as unhelpful is not a
trivial task.

To identify unhelpful images, we first extracted SIFT features [10]
for all images, as previously proposed by Tran et al. [16]. We filtered
out the images for which no SIFT features were detected. Secondly,
we evaluated the blurriness of the remaining images using focus
measures. We filtered out blurry images based on empirical thresh-
olds.
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2.2 Usage of Vision-Language Models
We used two Vision-Language Models (VLM) to extract information
from the images in the dataset: BLIP-2 [8] and LLaVA [9]. Due to
their models’ inherent natures, we employed different approaches
for the two. Both were run as local instances and prompted for each
image.

For BLIP-2, we used three questions to extract information from
the images. The first was aimed at identifying the objects present
(“What are the objects in this image?”). The second was to extract
the environment as natural language text (“What is the environment
seen in this image?”). The third sought to determine the location or
context of the image (“Where was this picture taken?”). Examples
of the BLIP-2 output are shown in Table 1 relating to the images in
Figures 1, 2, and 3.

Furthermore, we employed LLaVA to generate descriptions of the
images by prompting it with “Describe the image!”. This resulted in
detailed text such as the examples shown in Table 1, again relating
to images in Figure 1, 2, and 3.

Taking a closer look at the descriptions provided by LLaVA and
BLIP-2 (see Table 1), we can find several significant relations to the
test queries for the first two example images, while the descriptions
generated for the third image are lacking important information.
Concerning the image in Figure 1 and the first query about drinks
on a rooftop in Bangkok, keywords such as "rooftoop", "glass",
"drink" (by LLaVA), and "night" (by BLIP-2) are helpful for finding
the corresponding lifelog images. However, the outputs of the two
VLM’s cannot account for neither completeness, nor accuracy. For
example, LLaVA describes the first image to feature "a person stand-
ing", while BLIP-2 for example describes a cigarette and the picture
as taken "at the top of the world, the world’s tallest building, the
chicago tower".

It is also remarkable that the descriptions provided by LLaVA
change over sequences of similar images, which are characteristic
to lifelog data. For example, in the sequence of images showing the
drinks on a rooftop in Bangkok, LLaVA changes from describing
a person "standing" to "sitting" among others, while there are no
explicit indicators in the images.

Considering the image in Figure 2, LlaVA mislocates the dog on
the right side - and closely behind the man, while BLIP-2 again
creates a very specific description of the location as "the garden
of a house in the village of clonmel, county tipperary". The third
image (see Figure 3) is rather tricky. The information about the
model train mentioned in the test query can mainly be extracted by
OCR. While both VLM’s correctly describe the scene as showing
the interior of a store, both fail to find more relevant information
for the test query. Unfortunately, LLaVA misdescribes the image
as showing a grocery store, "aisles filled with food items", "several
people shopping", "several TVs mounted", and as featuring a dining
area, too. BLIP-2 does not provide much of information, but also
misdescribes "a box of cereals".

In the final step, we extracted the concepts from the answers of
the VLM’s. This was done using Core NLP’s [11] open information
extraction pipeline. Then, we mapped the extracted concepts to
Wikidata’s1 Q-identifiers through entity linking. Furthermore, we

1https://www.wikidata.org/

also kept the generated data to use as a fallback option in full-text
search.

2.3 Embedding Methods for Similarity Search
To enable text-based querying, we use two independent embed-
ding models. The first one, which was already used in our 2023
participation [12], uses an OpenCLIP [2] model trained on the
LAION-5B [14] dataset.

The second one uses the VLM-generated textual descriptions
described in the previous section. We employ OpenAI Text Em-
beddings2 to retrieve images for given natural language queries
based on the text descriptions of the images generated by LLaVA.
Specifically, we adopt the model text-embedding-3-small3 to encode
the text descriptions of all images into contextual embeddings of
the size 1536. Then, given a natural language query, we encode
the query with the same model and rank all images according to
the cosine similarity of their embeddings to the embedding of the
query.

2.4 Event Detection for Temporal Query
Handling

The Lifelog data possess a sequential structure that can be har-
nessed for temporal query handling. Yet, for temporal retrieval
to be effective, the images need to be organized into semantically
related sequences, previously referred to as “events” [1, 16]. We seg-
ment the available images into events based on the images’ spatial,
temporal, and visual information.

2.4.1 Temporal. We primarily use the provided temporal metadata
associated with each image [4].

2.4.2 Spatial. Similarly to the previous year’s participation [12],
to determine the lifelogger’s physical location, we use the provided
metadata, and we infer further spatial information based on visual
input. In particular, we use the “latitude”, “longitude”, and “semantic
name” columns of the metadata table. We refer to this information
as provided semantic location. Additionally, we infer spatial infor-
mation based on visual input. To do so, we query Wikidata for the
closest physical entity with a spatial position to any log entry. We
refer to this information as inferred semantic location.

2.4.3 Visual. We identify the visual concepts present on each im-
age using a combination of the identified (a) SIFT features (Section
2.1) and (b) VGG16 features [15], as well as the computed em-
beddings (c) from the OpenCLIP model trained on the LAION-5B
dataset and (d) the VLM-generated textual descriptions (Section 2.3).

2.4.4 Event identification algorithm. To identify events, we process
the images sequentially. Each image is compared with its imme-
diately preceding one based on the identified visual features and
using cosine distance. Two images are considered to belong to the
same event if their cosine distance is below an empirically identified
threshold. Each event is given a unique identifier. It is annotated
with its start and end time and provided and inferred locations.

2https://platform.openai.com/docs/guides/embeddings
3https://openai.com/blog/new-embedding-models-and-api-updates
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Figure 1: Image 20190915_140614_000 Figure 2: Image 20191225_133531_000 Figure 3: Image 20190622_081018_000

Table 1: Test queries and VLM output corresponding to the lifelog images in Figure 1, 2, and 3

Figure 1 Figure 2 Figure 3
Test
query

Drinks on top of the Bangkok. Tak-
ing a drink on a rooftop bar at night
in Bangkok. It was on the same day
that I flew into Bangkok.

I remember a man in a blue coat walking
a dog in the countryside in Ireland on a
sunny afternoon.

When did I buy that model train? I remember
it was a marklin brand train and I bought it at
the weekend. Jer convincedme to buy it when
having coffee and I bought it immediately
after coffee. It was in June 2019.

LLaVA The image features a person stand-
ing on a balcony or rooftop, with
a city skyline visible in the back-
ground. The person is holding a glass
of water, possibly enjoying a drink
while taking in the view. The glass is
placed on a table nearby. In addition
to the person and the glass, there is
a cell phone on the table, possibly
belonging to the person or someone
else who was there earlier. The scene
captures a moment of relaxation and
appreciation of the city’s beauty.

The image features a man walking his dog
on a leash down a dirt road. The man is
wearing a blue jacket and is positioned to-
wards the left side of the scene. The dog
is located on the right side of the man, fol-
lowing closely behind him. The dirt road
appears to be a pathway through a wooded
area, with trees surrounding the scene. The
overall atmosphere suggests a peaceful and
leisurelywalk for both theman and his dog.

The image depicts a large grocery store with
aisles filled with various food items. The store
has a clean and organized appearance, mak-
ing it easy for customers to find what they are
looking for. There are several people shop-
ping in the store, with some browsing the
aisles and others standing near the cash reg-
isters. In addition to the food items, there are
several TVs mounted on the walls throughout
the store, likely providing information or en-
tertainment for the shoppers. The store also
features a dining area with multiple dining
tables and chairs, possibly for customers to
enjoy their meals or take a break from shop-
ping.

BLIP-2 a) A glass of water and a cigarette
b) The environment is seen in this
image is a city at night
c) at the top of the world, the world’s
tallest building, the chicago tower

a) a man walking his dog on a country road
b) a man walking his dog on a country road
c) it was taken in the garden of a house in
the village of clonmel, county tipperary

a) A box of cereal
b) a supermarket
c) in a supermarket

Test queries are extracted from the LSC’23 archive, LLava output for the prompt "Describe the image!", and BLIP-2 output corresponding to
prompts: a) "What are the objects in this image?", b) "What is the environment seen in this image?", and c) "Where was this picture taken?".

2.5 Multimodal Graph Construction
As in previous iterations, the graph structure is organized around
the images provided in the dataset since they form the unit of
retrieval for two out of the three task types. Each image is related
to the entities and feature vectors extracted from them, as well as
to the metadata provided with the dataset. In addition, we re-use
some of the clustering introduced in our 2023 participation [12]
to group-related images. These groupings are then used for result
aggregation. Additionally, higher-order structures for larger time
intervals (i.e., days, months, years) are used for efficient filtering.

As in our previous system version, the graph is stored in our
custom MediaGraph Store4 that is capable of storing and querying
multimodal graphs, including their media content.

3 QUERYING
This section provides a brief overview of the querying and interac-
tion mechanism offered by our graph-based approach.

4https://github.com/lucaro/MeGraS
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3.1 Unstructured Data
The initial query is most commonly done using the features de-
scribed in Section 2.3. Both embedding methods generate a query
vector from a text query, which is then used to perform a kNN
search to determine relevant images. The two embedding methods
can be used in isolation, or their results can be combined using score-
fusion. For each image, the graph structure will also be queried for
its temporal context.

3.2 Relevance Feedback
We apply a relevance feedback approach inspired by Khan et al.
[6, 7] to include a human signal in the querying process. After the
initial query provides a set of images, the user can label each image
as relevant or not relevant. A classifier then uses this information
to determine the embedding vectors of the images that are closest
to the relevant images and furthest to the non-relevant ones within
the embedding space.

3.3 Structured Data
In addition to queries based on vector information, the structured
data in the graph can also be used for querying. These queries can
include all types of relationships captured by the graph and be
either used as an initial query or as a late filter. When used as an
initial query, the graph is queried directly for all images that are
associated with the relevant properties. When used as a late filter,
an existing result set is used, and all contained elements that do
not match the filter criteria are removed.

3.4 Temporal Query Handling
Inspired by previous LSC systems [1, 17] and based on our definition
of events (Section 2.4), we enable the temporal search of events
in close vicinity to a main event. Any retrieved event or other
aggregate of results can be used as a query to obtain information
about what happened in close temporal proximity before or after
the selected event. Additionally, queries can be constructed with a
temporal notion from the outset by combining multiple sub-queries
with a first-this-then-that temporal semantic.

4 USER INTERACTION
Similar to its predecessor, LifeGraph 4 uses a minimalist user in-
terface that devotes as much screen estate as possible to result-
exploration. Textual and structural queries can be entered at the
top of the screen, analogously to [13]. After the results for a query
have been returned, this top bar also offers controls over how results
are to be grouped for display.

In addition to the option of narrowing down the set of retrieved
images by providing relevance feedback as described in Section 3.2,
we implement the option to re-rank the results with the goal of
increasing the diversity of the images within the retrieved set. We
use a maximal marginal relevance recommendation approach to
minimize the number of very similar images being seen at the
same time, aiming to increase the efficiency of exploration. As
different use cases and query results might require different re-
ranking strategies, we provide the option to adapt the degree of
diversity dynamically.

Table 2: Test queries as used in LSC’23 and the ranking of the
1st correct image by our system. Showing results for both
known-item search queries (top) and ad-hoc search queries
(bottom).

Query* Embeddings OpenCLIP
Drinks on top of the Bangkok... 1 1

I remember that there was a man... 1 1
When did I buy that model train... 28,279 17,666
I was getting an eye test after... 93 1,010

Having lunch with Dermot, who... 18,883 29
I remember a man in a blue coat... 1 1

At a hungry lunchtime, I was eating... 14 30
There was a man in the front row... 22 1
I am never eating BBQ’d oysters... 1 3

Waiting at Dublin airport to collect... 20 1,112
Find examples of when I was eating... 14 5
Find examples of when I was taking... 3 83
Find examples of when I was trying... 6 6
Find examples of me reading a menu... 1 1
Find examples when I’m in the car... 3 1
Find examples of when I was in... 2 40
Find examples of me using an... 1 1

Find examples of when I was wearing... 257 2
Find examples of me taking a picture... 1 1
Find examples of when I was looking... 2 1

* Refer to the archive of LSC’23 for complete queries.5

Retrieved elements can also be used to expand the current re-
sult set by requesting the temporal context of any retrieved event
group. Similarly, current result sets can also be filtered without
re-issuing a query in order to narrow down the results and hide
elements later deemed to be irrelevant from view. This functionality
is primarily used for structured metadata to hide results that do
not originate from a specific location or time interval. Since, during
certain task types, more information is revealed during the task,
it can be more efficient to narrow down already retrieved results
rather than reissuing a new query with additional constraints.

5 PRELIMINARY EXPERIMENTS
We conducted preliminary experiments to examine the performance
of our system when using the embeddings computed by OpenAI
Embeddings and OpenCLIP [5]. The embeddings of OpenAI Embed-
dings are computed based on the LLaVA descriptions, as introduced
in Section 2.2 and Section 2.3. The embeddings of OpenCLIP are
computed based on “xlm-roberta-base-ViT-B-32.”6

There were 20 queries in LSC 20237 that required the retrieval
of specific images. We use them as test queries in a zero-shot
setup—the system was not optimized for this challenge. In LSC
2023, ground-truth images were provided for 9 test queries. For
the rest 11 test queries, we use the answers from participants that
were judged to be correct in the challenge. We aim to evaluate if
5https://github.com/lucaro/LSC-Archive/blob/main/2023/LSC23.json
6https://github.com/mlfoundations/open_clip
7http://lifelogsearch.org/lsc/2023/index.html
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the images ranked at the top according to the cosine similarity of
computed embeddings are indeed correct answers. The ranking of
the first correct answer for each test query is reported in Table 2,
where we can observe that the results are very promising. A correct
image is returned in the top 20 candidates for 15 (75%) and 13 (65%)
queries based on OpenAI Embeddings and OpenCLIP, respectively.
Especially, the 1st-ranked image is directly a correct answer for 7
(35%) and 9 (45%) queries based on the two embedding methods.

6 CONCLUSION
In this paper, we presented an overview of our contribution to the
2024 Lifelog Search Challenge. Our graph-based approach builds
upon our contribution from last year by extending it with additional
information extracted using a Vision-Language Model. Preliminary
experiments indicate that the new features are capable of solving a
large fraction of the known-item search and ad-hoc search queries
from 2023 while complementing the retrieval performance of the
existing CLIP-based functionality.
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