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ABSTRACT This paper conducts a thorough examination of the 12th Video Browser Showdown
(VBS) competition, a well-established international benchmarking campaign for interactive video
search systems. The annual VBS competition has witnessed a steep rise in the popularity of
multimodal embedding-based approaches in interactive video retrieval. Most of the thirteen
systems participating in VBS 2023 utilized a CLIP-based cross-modal search model, allowing
the specification of free-form text queries to search visual content. This shared emphasis on
joint embedding models contributed to balanced performance across various teams. However, the
distinguishing factors of the top-performing teams included the adept combination of multiple
models and search modes, along with the capabilities of interactive interfaces to facilitate and
refine the search process.
Our work provides an overview of the state-of-the-art approaches employed by the participating
systems and conducts a thorough analysis of their search logs, which record user interactions and
results of their queries for each task. Our comprehensive examination of the VBS competition offers
assessments of the effectiveness of the retrieval models, browsing efficiency, and user query patterns.
Additionally, it provides valuable insights into the evolving landscape of interactive video retrieval
and its future challenges.

INDEX TERMS content-based retrieval, interactive evaluation campaign, interactive video retrieval,
performance evaluation, video browsing, video content analysis
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I. INTRODUCTION
“A picture is worth a thousand words”, goes the age-
old adage, yet the challenge is that we do not always
have access to the perfect image to convey our message.
The image itself may be the primary target of our infor-
mation need, requiring alternative means of expression.
For example, consider a journalist searching for a specific
video within a vast, unannotated multimedia collection
based on a fleeting memory. If even a single frame of the
desired video were readily available, finding the complete
video would become trivial in the realm of computer
vision and video retrieval. However, in practice, the
journalist must rely on alternative means to describe
the content of the target video. While words serve as
the most immediate and utilized tool for conveying de-
scriptions, visual cues such as similar images or sketches
can also be used fruitfully.

In recent years, significant efforts have been made to
develop high-performance video retrieval systems, allow-
ing users to employ various search capabilities, including
text, visual, or multimodal queries. These systems may
also actively engage users in the search process, allowing
them to refine queries, explore results, provide feedback,
and iteratively navigate the video content to fulfill their
information needs. However, assessing and comparing
these systems poses a significant challenge due to their
interactive nature and diverse supported query and
search modes, making it impractical to conduct a static
comparison against a conventional benchmark dataset.
To address this, live benchmarking campaigns, such as
the Video Browser Showdown (VBS) [56], [74] and the
Lifelog Search Challenge (LCS) [51], [109], have emerged
as crucial initiatives.

This paper provides an in-depth evaluation of the 2023
iteration of VBS, an international video content search
competition held annually since 2012 at the Interna-
tional Conference on Multimedia Modeling (MMM). It
has become a well-established benchmark offering com-
parative insights into state-of-the-art interactive video
search systems. During VBS, participants face two main
tasks: Known-Item Search (KIS) and Ad-hoc Video
Search (AVS), both of which are to be completed within
a predefined time limit. KIS tasks require participants
to locate a specific video clip within a dataset, with the
instance either visually presented or described textually
by a moderator. In AVS tasks, participants must find as
many video clips as possible that match a general textual
description. Scoring considers factors such as search
time, false submissions, and the diversity of instances
found in AVS tasks.

Since VBS search tasks [72] require automatic anal-
ysis of general video content and the “out-of-the-box”
effectiveness of video retrieval models, the competition’s
impact extends beyond evaluation, actively shaping the
evolution of interactive video search systems. Winning
approaches often set the tone for the coming years, guid-

ing researchers and developers towards promising direc-
tions. For instance, based on the winning approaches
of the last few years, mirroring trends in the broader
computer vision domain, we observed an indisputable
shift not only from traditional handcrafted similarity
search models to modern deep learning approaches [50]
but also a move towards the prevalent use of joint
embedding models [67], [86]. These models have played
a central role in current research on interactive video
retrieval due to their capability to integrate information
from multiple modalities, along with enhanced semantic
understanding. Moreover, they exhibit a notable capac-
ity to generalize across domains and tasks. Training
these models on extensive web-scale datasets enhances
their ability to efficiently search for a diverse range
of concepts, as well as whole phrases linking concepts
with additional properties (e.g., “blue bird on a branch”,
“white shirt and blue jeans”). Consequently, it is not
surprising that in VBS 2023, most of the teams used
a CLIP model [60], [86] or other multimodal embed-
dings [66], [77], [81] in their interactive video search
systems. Teams integrating recently introduced versions
of the CLIP model trained on LAION datasets [60],
[101] demonstrated impressive performance, while other
teams with the original CLIP [86] remain competitive.
However, our analysis emphasizes that interactive inter-
faces designed on top of the corresponding multimodal
ranking models are crucial. Systems that used the same
latest CLIP model did not perform consistently. Factors
differentiating system effectiveness include the browsing
interface, the ability to combine different models, and
the option to reorder results based on temporal searches
and visual similarity.

The main contributions of this paper can be summa-
rized as follows:

• Providing a valuable comparative analysis of sys-
tems that participated in the 12th VBS com-
petition, outlining the state-of-the-art approaches
adopted and illustrating the latest trends in inter-
active video retrieval.

• Offering a comprehensive overview of the competi-
tion settings and outcomes, including overall scores,
the number of correct and incorrect submissions,
and submission times for each team and task.

• Delving into an in-depth analysis of teams’ per-
formance during KIS tasks, offering assessments
of retrieval model effectiveness, browsing efficiency,
and user query patterns.

• Exploring the outcomes of AVS tasks, including
timeline statistics, success rates, task difficulty anal-
ysis, and agreement with judges’ assessments.

• Providing a critical analysis of current challenges
and suggesting pathways for future improvements
in upcoming VBS evaluations.

The remainder of this paper is structured as follows:
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FIGURE 1: VBS2023 featured a hybrid format. In-
person teams gathered in a room with a large screen
where tasks were projected. Meanwhile, online teams
accessed the main DRES overview through their web
browsers, where tasks and scores were displayed.

Section II summarizes the VBS 2023 settings and tasks;
Section III outlines approaches utilized by the partic-
ipating systems; Section IV provides a comprehensive
analysis of system results and queries during the VBS
tasks; Section V delves into current challenges in inter-
active VBS evaluation and provides recommendations
for future VBS editions; Section VI discuss our findings,
future challenges, and research directions in interactive
video search; Section VII draws the conclusions.

II. COMPETITION SETUP
VBS is a live competition to evaluate interactive search
tools. Over the last few years, it has employed a subset
of the Vimeo Creative Commons Collection (V3C [93]),
comprising 17,235 video files totaling 2,300 hours of
video content. In 2023, the competition introduced the
use of the Marine Video Kit (MVK [111]), a smaller
but very challenging dataset. The MVK consists of
1,374 videos, amounting to approximately 12 hours,
showcasing underwater scenes.1

VBS 2023 was a hybrid event in which both in-person
and online teams participated (Fig. 1). Each team
consisted of a maximum of two operators authorized to
operate the retrieval system individually. The competi-
tion was controlled by the DRES evaluation server [90],
which controlled task presentation and collection and
evaluation of submissions.

Similarly to previous editions, VBS 2023 included KIS
and AVS tasks. For KIS tasks, there exists a single
unique correct segment in the collection. The query is
either presented as the target video segment (referred
to as KIS-V, representing visual KIS) or as a textual
description of the contents of this segment (referred
to as KIS-T, representing textual KIS), which usually

1Note that a snapshot of the dataset from 2022, modified to the
needs of VBS, has been used.

extended during the working time. In contrast, AVS
queries are broader textual queries with an undeter-
mined number of correct items. The ground truth is
thus not a priori-defined but established during the
competition using live judging. Some KIS-V queries used
the MVK dataset (referred to as KIS-V-M), while all
other tasks used the V3C dataset. Each task has a
limited working time (7 minutes for KIS-T, 5 minutes
for others), with penalties for incorrect submissions.
Submissions are assessed against the ground truth for
KIS tasks, whereas for AVS, they are assessed by live
judges. The scoring for the KIS tasks, detailed in [56],
involves rewarding speed in finding the correct item
while penalizing wrong submissions. For AVS, a new
scoring formula was applied to foster a diversity of
submissions. Teams receive scores for the first correct
submission of each video, and a penalty is added for
wrong submissions to prevent the submission of unver-
ified shots. The score ft of a team t is determined as
in [70]:

ft = 1000 ·max
( 1

|C|

Vt∑
v

(
cv − ivp

)
, 0
)
,where (1)

C := set of correct videos across all teams’ submissions

Vt := set of videos with a submission for team t

cv := 1 if there is a correct submission for v, 0 else

iv := number of incorrect submissions before the first correct

submission for video v

p := submission penalty constant (set to 0.2)

This score function considers diversity, as submitting
multiple correct items from the same video does not
increase a team’s score. Furthermore, submissions as-
sociated with videos not commonly discovered by other
teams can significantly impact the evaluation, given that
each team’s score is divided by the total number of
correct videos from all teams.

The challenge in the query formulation process is not
only to ensure that the content exists in the collection
and – in the case of KIS queries – there is a unique
target that can be unambiguously identified but also
to ensure that queries are clearly phrased and also un-
derstandable by non-native speakers. This includes, for
example, choosing between terms that would describe an
object more precisely vs terms that are more commonly
used and broadly understood. An additional challenge
for AVS queries is to ensure a common understanding
of the judges of how to interpret the query and how
to treat border cases that arise. This is important to
ensure consistent judgment of all submissions. In 2022,
a process for reviewing queries with the team of judges
and performing a dry run for AVS queries has been
introduced and repeated for VBS 2023. Details on the
process and its evaluation can be found in [36]. A survey
among participants confirms that the goals of improving
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TABLE 1: List of participating systems and selected approaches used by them. The systems are ranked by their
overall score in VBS 2023, with the “Solved KIS” column indicating the number of tasks completed out of the 19
KIS tasks issued during the competition. In the “Shot detection” columns, the symbol “∗” denotes the utilization
of predefined shots from the V3C dataset [93]; when a time value is present, it indicates the application of uniform
sampling with the specified time interval; otherwise, when available, a reference to the method used is provided. The
symbol ✓ indicates that a method is used. A light gray color indicates that the feature is present but was not (or
just rarely) used. In the “Joint Embedding” column, the symbols ✓, ✓2, and ✓3 correspond to the usage of one, two,
and three multimodal embedding models, respectively. The ASR data for V3C was provided by [92].
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vibro [99] DE 3,992 18 2 [58] [58] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VISIONE [31] IT 3,625 17 2 * 1s ✓3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

VIREO [79] SG 3,258 16 2 * 3s ✓2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

vitrivr-VR [107] CH 3,200 16 2 * 1s ✓2 ✓

CVHunter [71] CZ 3,027 13 2 custom custom ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

vitrivr [96] CH 2,986 14 2 * 1s ✓3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Verge [84] GR 2,803 13 2 * 1s ✓3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

QIVISE [103] CN 2,314 14 1 * 2s ✓ ✓ ✓ ✓ ✓ ✓

VideoCLIP [82] IE 1,858 9 2 * 1s ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

v-FIRST [59] VN 1,773 9 1 * 1s ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

diveXplore [100] AT 1,647 9 1 [104] 10s ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

4MR [34] CH 1,626 10 2 * 1s ✓ ✓ ✓ ✓ ✓

Perfect Match [76] AT 34 0 1 * 2s ✓ ✓ ✓

query quality and judgment consistency are reached with
this process.

III. OVERVIEW OF STATE-OF-THE-ART APPROACHES
USED BY PARTICIPATING SYSTEMS
This section provides a concise overview of the advanced
techniques employed by participating systems in the
VBS 2023 (Table 1). It highlights the latest advance-
ments in video search and retrieval, showcasing the
progress made by the research community in improving
video exploration and analysis. It covers important sub-
sections such as Joint text-visual embedding methods,
Concept Search, Query by Example, Temporal Query-
ing, Relevance Feedback, and Browsing. The repositories
and relevant scientific articles have been referenced for
the open-source approaches utilized. It’s important to
note that among the systems, only VISIONE, vitrivr,
and vitrivr-VR are open source [4], [8], [23], [25],
[26]2. The other systems, although not entirely open-
source, use many models and approaches published in
open-source repositories, which are referred to in the
following sections.

2vitrivr, and vitrivr-VR comprise three components: the
user interface [25], [26], the Cineast retrieval and feature extraction
engine [4], and the Cottontail database [8]

A. JOINT TEXT-VISUAL EMBEDDING METHODS.

TABLE 2: Employed joint text-visual embedding mod-
els. The solid line separates CLIP-based models from
other multimodal embedding models.

Model System
OpenCLIP ViT-L/14@336 trained with LAION-
2B [15], [60]

VideoCLIP [82]
v-FIRST [59]

OpenCLIP ViT-L/14 trained with LAION-
2B [14], [60]

vibro [99]
VISIONE [31]

OpenCLIP ViT-L/14 trained with LAION-
400m [60]

diveXplore
[100]

OpenCLIP ViT-B/32 trained with LAION-
2B [12], [60] 4MR [34]

OpenCLIP ViT-B/32 xlm roberta base model
trained with LAION-5B [13], [60]

vitrivr [96]
vitrivr-VR [107]

CLIP [5], [86]
CVHunter [71]
vitrivr [96]
vitrivr-VR [107]

CLIP2Video [6], [45] VISIONE [31]

BLIP [3], [66] QIVISE [103]

CLIP4Clip [7], [77] VIREO [79]
Custom cross-modal network [20], [46] combining
multiple textual and visual features and employ-
ing OpenCLIP ViT-B/32 [60], [86], ResNet-152
[53], and ResNeXt-101 [80]

Verge [84]

ITV [116] VIREO [79]

ALADIN [2], [81] VISIONE [31]

custom model [24], [105] vitrivr [96]
vitrivr-VR [107]
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The VBS systems have greatly evolved in recent years,
offering innovative approaches to explore and retrieve
information from large video collections efficiently. Al-
most all these systems exploit joint text-visual embed-
dings to enhance the search experience and provide
more accurate results. We can broadly categorize these
systems into groups based on the number of multimodal
embedding models they employ: those utilizing a single
model and those using multiple models. In Table 1, the
symbols ✓,✓2,✓3 represent the usage of one, two, and
three multimodal embedding models, respectively. The
specific models used by each system are summarized in
Table 2.

Several notable implementations stand out in the cat-
egory of VBS systems with a single model. For instance,
vibro [99] employs the OpenCLIP ViT-L/14 [14], [60]
trained on LAION-2B [101] to produce joint text-visual
embeddings. VideoCLIP [82] and v-FIRST [110] uses
the visual transformer CLIP ViT-L@336 [15], [60], [86]
trained on the LAION-2B dataset. In VideoCLIP, the
integration of Milvus [113] vector database facilitates
seamless matching between embeddings. v-FIRST [59]
presents a revised version of their previous interactive
video retrieval system [110], which supports querying by
textual descriptions and visual examples. The joint text-
visual feature space is the basis for many of v-FIRST’s
functionalities, such as optimized vector search, fast
neighbor search, and compression of similar video seg-
ments. diveXplore [100] leverages the OpenCLIP
ViT-L/14 model trained on LAION-400m [60] to extract
visual embeddings from keyframes. The embeddings are
indexed in a FAISS [63] index that is used for all free-text
queries by a Python server running in the backend. This
server extracts embeddings from a text query, compares
them with an L2 distance to the visual embeddings
of the keyframes, and returns the ranked results via a
WebSocket connection to the frontend. 4MR [34] also
uses a CLIP model, the ViT-B/32 [12], [60], [86] pre-
trained on LAION-2B. A Python server in the backend
transforms the input to a vector, which is afterward
used for similarity search. QIVISE [103] employs the
BLIP [3], [66] model (ViT-B and CapFilt-L, the one
trained on 129M images), an advancement built on the
foundations of the CLIP [5], [86] model. In QIVISE,
the BLIP model is used to extract feature vectors from
both textual queries and images, then computes the
cosine similarity between these vectors. CVHunter used
a CLIP [86] model as well. However, the original version
(i.e., not trained with LAION data) was used.

On the other hand, VBS systems that utilize mul-
tiple joint embeddings employ a range of sophisti-
cated techniques to enhance the search process. For
instance, VISIONE incorporates three models: CLIP
ViT L/14 [14], [86] trained on the LAION-2B dataset,
CLIP2Video [6], [45], and ALADIN [2], [81], its own
cross-modal model. ALADIN generates high-quality

scores by aligning images and texts using a pre-trained
vision language transformer and then trains a shared
embedding space using a cross-modal alignment head.
The VISIONE system effectively combines the results
of these three models using a late fusion algorithm.
The CLIP and CLIP2Video features are indexed and
searched using FAISS library [63], while ALADIN fea-
tures are transformed into a textual format (Surro-
gate Text Representation [32]) to be indexed and
searched using Apache Lucene3. Similarly, other systems
like vitrivr and vitrivr-VR [96] rely on custom
visual-text co-embedding [24] techniques (similar to
W2VV++ [67]), along with CLIP and OpenCLIP [60],
[101] models (xlm-roberta-base-ViT-B-32 using
pre-trained laion5b_s13b_b90k weights [13]), pro-
viding multilingual query support and enabling the
search for videos using natural language prompts. One
of the benefits of OpenCLIP is its multi-language model,
which empowers users to formulate queries in a lot
of different languages, such as, but not limited to,
English and German. Verge [84], on the other hand,
utilizes three distinct trained networks, namely ResNet-
152 [53], ResNeXt-101 [80], and the CLIP model ViT-
B/32 [60], [86], to perform text-to-video matching [20],
[46]. Converting the intricate textual query and videos
into a shared latent space allows direct comparison.
Subsequently, an attention-based dual encoding network
is utilized. Four extensive video caption datasets (MSR-
VTT [118], TGIF [68], ActivityNet [39], and Vatex
[115]) were used to train the model. VIREO expands the
embedding bank with CLIP4Clip feature [7], [77] based
on the previous system [78] which relies mainly on the
ITV feature [116]. The CLIP4Clip feature is fine-tuned
on the MSR-VTT [118] dataset. In addition, the late
fusion of different features is also used to diversify the
search results.

B. CONCEPT SEARCH
Concept search enhances video retrieval by allowing
users to search for videos based on specific concepts or
semantic information. The participating systems in VBS
2023 employed various techniques, such as keyword de-
composition, concept probability estimation, and pixel-
wise concept annotation.

Over the years, vibro has been at the forefront
of incorporating text-based methods for video search,
including OCR, ASR, and automatic annotations of
frames. However, interestingly, none of these text-based
methods were utilized in the VBS 2023 challenge.

In contrast, the VISIONE system, similar to its pre-
vious version [30], focused on object detection using
three deep convolutional neural network models: Vari-
focalNet [11], [119], Mask R-CNN [11], [52], and Faster
R-CNN [10], [48]. These models were trained on different

3https://lucene.apache.org/
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datasets, namely COCO, LVIS, and OpenImages v4. To
ensure consistency and organization of class labels, the
VISIONE system implemented a hierarchical structure
based on WordNet4.
VIREO adopted concept search as a complementary

approach to embedding search. Through keyword de-
composition and concept probability estimation [116],
VIREO provided a ranked list of video shots associated
with each concept.
vitrivr employed pixel-based color [47] and concept

search [91] methodologies, like in previous iterations [55].
It leveraged DeepLab pixel-wise concept annotation [40]
and implemented post-processing techniques, such as
resolution reduction and label transformation, to facil-
itate efficient and effective spatially localized concept
search. Additionally, vitrivr introduced the concept
of Query-by-Semantic-Sketch, allowing users to search
using a concept brush.
diveXplore [100] offered search capabilities for vi-

sual concepts using EfficientNet [108], which was trained
on datasets such as Places365 [120], ImageNet-1K [65],
and GPR1200 [97]. However, the utilization of concept-
based search was limited in the challenge due to the su-
perior performance of CLIP, which overshadowed other
methods.
Verge [84] continued to build upon its previous

version [33] by employing a 3D-CNN architecture for
spatio-temporal human activity recognition [1]. The
system followed a three-step pipeline [49] involving
object detection, object tracking, and activity recog-
nition. This allowed Verge to identify and recognize
human-related activities in videos effectively. More-
over, the system exploits Yolo v4 [27] for human
and face detection, WideResNet and ResNet50 pre-
trained models [18] for Places365 concept detection,
and EfficientNetV2-L pretrained model [9], [21] for Im-
ageNet concept detection, Pretrained Sentence-BERT
model (stsb-mpnet-base-v2) [16] for concept label
similarity inference.
v-FIRST indexes different concepts and allows users

to apply Boolean retrieval for added flexibility [59]. This
combination of concept search and joint embedding is
implemented in their unified database.
VideoCLIP inherited features from its previous ver-

sion [83] and incorporated K-means clustering for dom-
inant color determination at a pixel level. It also em-
ployed the Yolov5 model [62] for extracting visual con-
cepts from videos. These features enhanced the search
capabilities of VideoCLIP, enabling users to retrieve
videos based on color and visual concepts.

Finally, Perfect Match utilized various concept
detection models [62], [65], [86] and precomputed results
for efficient frame-level searching. By leveraging different

4Available at https://zenodo.org/records/7194300

classification datasets [38], [69], [94], [117], such as
ImageNet, MSCOCO, Food-101, and SUN397.

C. QUERY BY EXAMPLE
Many VBS systems support query-by-example, allowing
users to use an image or video frame as a query to
discover visually or semantically similar content. Similar
to cross-modal search, where a text prompt is used
to search for a video, we observed that the prevailing
approaches for visual similarity search rely on features
extracted from the visual transformer of multimodal
models like CLIP.

For example, vibro [99] employs a CLIP ViT-L [15],
[86] network that has been pre-trained on the LAION-
2B dataset and fine-tuned in publicly available image
datasets [98]. This enables the system to extract feature
vectors useful for content-based image retrieval [97].
On the other hand, VISIONE provides support for
visual and semantic similarity searches. It utilizes GEM
features [88] for visual similarity search and incorporates
CLIP2Video [6], [45] and ALADIN [2], [81] for search-
ing semantically similar video clips. CVHunter and
VideoCLIP utilize the same CLIP features for image
similarity search as they do for text-to-image search.
VIREO measures the similarity between a shot query and
all shot candidates using the fine-tuned CLIP4Clip [77]
feature. diveXplore [100] uses the CLIP ViT-L/14
model to extract image embeddings from an example
image, which are then sent to the Python server in the
backend to query the FAISS [63] L2-index for keyframes
with similar embeddings. Verge [84] incorporates a
visual similarity search module that facilitates the re-
trieval of visually similar content based on a query im-
age. This module utilizes feature vectors generated from
a fine-tuned GoogleNet architecture [85] and leverages
an efficient IVFADC indexing structure [61]. v-FIRST
employs optimized nearest neighbor algorithms in the
embedding subspace [59] to identify targets similar to
the example image or text. Furthermore, in v-FIRST,
an image generator based on MidJourney and Stable
Diffusion is integrated to synthesize images from a text
prompt as an additional query methodology. vitrivr
and vitrivr-VR use simple color and edge features
for query-by-example. At any point, while watching
a video, the current frame can be used as a source
image for query-by-example using these features. 4MR
[34] employs the CLIP model ViT-B/32 [12], [86] for
query-by-example. In an offline phase, all keyframes were
extracted beforehand. These CLIP feature vectors are
used to retrieve objects similar to a given example.

D. TEMPORAL QUERYING
Temporal queries are crucial to enhancing VBS sys-
tems’ search capabilities, with many incorporating this
functionality to facilitate users in searching for specific
patterns or relationships within video clips.
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For instance, VISIONE enables temporal queries by
describing two scenes from the same video clip. It utilizes
a temporal quantization approach, dividing video time
into intervals and independently processing the results
of both queries to retain representative results for each
time interval and query. Result pairs from the same
video with a temporal distance smaller than a certain
threshold are displayed as the temporal search results.

Similarly, CVHunter and vibro utilize a temporal
query fusion technique, computing two arrays of scores
for different temporal query parts and then fusing them
to generate final results. In vibro, keyframes are ex-
tracted at a rate of 2 frames per second, with temporal
queries considering only temporally close keyframes.
CVHunter uses a similar frame extraction approach as
VIRET [73].
VIREO supports temporal queries consisting of two

successive and independent queries. A sliding window
approach is used to aggregate the scores of the two
queries and index the shots between shot pairs that
match the two queries.

In Verge [84], temporal queries are restricted to
concepts, enabling users to search for two concepts
appearing consecutively within the same video. The
system generates separate shot probability lists for each
concept, calculates the intersection of concepts, and re-
ranks shots using an objective function.

Both vitrivr-VR and vitrivr offer temporal
querying capabilities, allowing users to search for specific
patterns or relationships in consecutive video segments.
These systems enable the combination of multiple non-
temporal queries into a single temporal query.
v-FIRST facilitates finding two sequential images in

a video by summing the embeddings of each image to
create a new representation and then searching within
the collection of embeddings for all possible pairs.

E. RELEVANCE FEEDBACK
In the realm of user relevance feedback [44], [54], [64],
[95], several VBS systems have exploited innovative
approaches to enhance the retrieval process based on
user interactions.
CVHunter incorporates the Bayesian relevance feed-

back model [43], allowing users to provide feedback on
the relevance of retrieved video clips. In this framework,
the system maintains probability for each image in the
database, estimating its relevance to the user. In each
iteration, example images are provided in addition to
a list of selected implicit negative examples. CVHunter
improved this system by providing a temporal version of
the Bayesian feedback. This model enables feedback for
the single and temporal variant [75], empowering users
to refine their queries and obtain more accurate search
results.
QIVISE introduces a novel quantum-inspired inter-

action paradigm for modeling user interactions. Build-

ing upon recent studies highlighting the potential of
quantum theory’s mathematical framework for infor-
mation retrieval [112], QIVISE integrates state-of-the-
art quantum-inspired re-ranking paradigm [114] along
with feedback processing methodologies [41]. After the
initial retrieval phase, users can select video clips that
are highly consistent or inconsistent with their demands.
Within a quantum state space, these selected clips
are then used to estimate the user’s actual demands,
utilizing the space spanned by the chosen clip vector and
its complement subspace. For the final re-ranking score,
unlike the Rocchio Algorithm [42], QIVISE utilizes the
relevance probability from the previous retrieval round
instead of treating the relevance probabilities of all
selected video clips as equal. For a detailed explanation
of user demand estimation and re-ranking score calcula-
tion, refer to the QIVISE paper [103].

In vibro, users have a dedicated application window
for AVS tasks. Any video frame selected and sent to the
evaluation server is considered positive feedback to the
system [99]. The integrated feedback loop computes the
minimum distance of all the previously selected frames
and the remaining frames in the dataset. The results list
will be displayed in the same AVS windows, and the user
can repeat the process as often as desired.
v-FIRST implements an optional query reweighting

using the top retrieved images [59]. This approach helps
mitigate irrelevant factors and emphasizes concepts that
are crucial to the retrieval process.

F. OTHER
In the context of incorporating additional features and
modules into VBS systems, several approaches have
been adopted to enhance the search experience and
provide more comprehensive results.
VISIONE utilizes the Whisper model [19], [87] to

integrate a speech-to-text feature into the system. This
feature allows users to dictate their queries rather than
type them, making the process of issuing textual queries
more convenient. The spoken text is automatically trans-
lated into English and used as a query for the cross-
modal search modules.
CVHunter enhances the result set by augmenting it

with labels assigned through zero-shot CLIP classifica-
tion. A pre-selected set of class labels is used to classify
the images in the result set. These labels are displayed
below each image in the main search panel, providing
users with additional information about the content and
allowing them to learn words associated with various
images, as assigned by CLIP.
diveXplore [100] incorporates text detection and

recognition features using the CRAFT model [17], [35].
This model is utilized to detect regions with text in
keyframes and subsequently recognize the text in those
regions. Additionally, the YOLOv5 [28], [62] model is
employed to detect COCO objects in the keyframes,
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enhancing the system’s understanding of the visual
content. Keyframes, extracted as the middle frames of
detected shots using TransNetv2 [22], [104], are utilized
for further analysis. However, due to certain limitations,
such as a lack of specialized features for AVS tasks
and being operated by only one person, the AVS score
achieved by diveXplore was relatively low. Another
difficulty was the very coarse uniform frame sampling for
the MVK dataset, which made many queries unsolvable.
Verge [84] incorporates a human and face detec-

tion module that accurately detects and counts human
and human faces in the keyframes of each shot. The
module uses the YOLOv4 deep neural network, which
uses a DCNN architecture to extract human silhouettes
and faces. The model is trained on the MS COCO
dataset [69] and fine-tuned using the CrowdHuman
dataset [102] to handle crowd-centered scenes with oc-
clusions. During inference, the module calculates the
total number of humans and human heads by consid-
ering only bounding boxes that surpass a predefined
threshold. This enables users to distinguish activities
involving single or multiple individuals effectively.
v-FIRST is among the first teams to use a prompt

suggestor [59] powered by a Large Language Model
(LLM) to suggest search terms based on the data to
guide the retrieval process and enhance the clarity
of the query. v-FIRST also suggests the adoption of
external search engines to collectively form a system of
specialized components.

G. BROWSING
Different VBS systems provide diverse browsing inter-
faces to facilitate the exploration of search results and
enhance the user experience. Here, we summarize only
their main features while directing interested readers to
the official VBS webpage for short videos demonstrating
each system’s search and browsing capabilities (https://
videobrowsershowdown.org/teams/vbs-2023-systems/).
vibro maintains its longstanding 2D map of visually

arranged images, which has been improved in the 2023
version for faster and more accurate performance using
Fast Linear Assignment Sorting (FLAS) [37] for grid
layout arrangement and Dynamic Exploration Graph
for internal graph representation [57]. These maps are
mainly used to find similar images in the entire dataset,
the current search result list, and the selected video.
Another addition to vibro this year is automatic video
playback in AVS mode when hovering over an image to
quickly identify the motion of objects in the frame for
more complex tasks.

In VISIONE’s browsing interface, results are grouped
by video, with each row representing one video and
displaying up to 10 results sorted by the retrieval model’s
score. Each result has a menu that provides various
options, such as performing similarity searches, viewing
the temporal context, playing the entire video starting

from the selected frame, or previewing the video in a
neighborhood of the selected frame.
VIREO’s browsing interface comprises three main

components: a ranked list of video shots returned from
the search engine, shots from the same video arranged
chronologically when a shot is selected, and a pop-up
window showing shots most similar to the selected one
during similarity search.
vitrivr-VR is the only system with a virtual real-

ity (VR) user interface, offering several result-browsing
interfaces directly in VR. Query results are displayed
cylindrically around the user, allowing intuitive brows-
ing by turning the head. Additionally, the cylindrical
grid can be rotated horizontally, hiding higher-ranked,
already-viewed results and revealing unseen results in
their place. For temporal queries, each space in the
results grid shows a stack of previews, one frame for
each segment in the matching result sequence. Results
can also be grouped by video, such that each position
in the grid shows the highest-ranked segments of a
single video, ordered by the best-ranked segment. Intra-
video browsing is facilitated by providing users with
both a conventional video player with a timeline and
a multimedia drawer showing keyframes of the video in
a virtual box. By riffling through these keyframes, each
can be intuitively inspected and selected to skip to the
relevant part of the video.

The browsing interface of CVHunter consists of a
scrolling grid of top-ranked video frames, with the option
to quickly inspect video sequences (usually four fps)
and apply presentation filters (i.e., select only k top-
ranked frames from each video). From each frame, a
video summary with representative frames is accessible.
vitrivr offers multiple result presentation options.

In the context of VBS, the most relevant option groups
retrieved segments by video and arranged them chrono-
logically within each video. Each segment is shown using
a static preview image. Clicking on any such preview
opens a video player overlay that starts the playback
of the video from the start of the selected segment.
Additional controls, such as adjusting playback speed
and navigating the timeline, facilitate browsing within
the video.
Verge’s user interface offers image size customiza-

tion, an undo button for reverting to previous results,
and a rerank button to rerank results based on another
query. It offers several search modules, including free
text search, concept and activity search, late fusion, tem-
poral fusion, color-based image search, and search based
on the number of people or faces. Recent enhancements
in Verge include replacing the filmstrip of frames with
a modal, a button for video playback directly on each
shot, and a button that, when enabled, will return only
the best shot from each video for AVS queries.
QIVISE’s interface is organized into three distinct

areas. After calculating the relevance of video shots, the
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system presents a sorted display in the main window.
Users can click on any thumbnail to initiate one of two
displays: the Video Shot Display or the Shot Segmenta-
tion Display. The Video Shot Display presents all shots
from the same video as the selected shot. This is partic-
ularly useful for queries that span multiple shots, where
a single shot may not provide sufficient information for
accurate judgment. The Shot Segmentation Display, on
the other hand, shows frames immediately before and
after the chosen moment within the video, offering a
more granular view of the surrounding frames to assist
users in their evaluation.
VideoCLIP enables search using a variety of modal-

ities, including rich text, dominant color, OCR, and
query-by-image. The results are displayed in groups
based on their video and video segments to reduce
the effort for a user when locating potentially relevant
targets.
v-FIRST supports browsing at different granularity

levels to facilitate quick dataset browsing and discards
similar images to enhance information density.
diveXplore [100] uses a simple 2D grid for browsing

results. For each result, it is possible to inspect the
context by opening the shot list of the corresponding
video, which also provides a video player and displays
available meta-data.

In 4MR’s [34] browsing window, results are arranged in
a grid, with the first 500 displayed. Each video segment
is represented by its keyframe. Users can initiate a video
preview by clicking on these keyframes, which opens a
video player for further exploration.

Inspired by dating apps like Tinder5, Perfect
Match’s browsing interface presents a frame suggestion
to the user based on the search input. The user can
quickly decide if the suggested frame belongs to the
desired shot. If it is correct, the frame can be submitted.
Alternatively, the user can view the next frame sugges-
tion or search for the same or another video.

IV. ANALYSIS OF VBS RESULTS
This section provides a comprehensive overview of the
competition results and the performance of different
systems. Subsection IV-A offers an overview of the
overall results, while Subsection IV-B delves into the
analysis of the KIS tasks, examining the available result
logs for a select number of systems. Subsection IV-C
provides information on performance in AVS tasks. The
code and data required to replicate all the analyses
presented in this section are publicly available via:
https://github.com/sauterl/VBS23-Post-Hoc-Analysis.

A. OVERALL RESULTS
During the competition, a total of seven AVS, seven KIS-
T, six KIS-V, and six KIS-V-M tasks were performed.

5https://tinder.com
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FIGURE 2: Overall scores per team and task type

The total normalized scores per task type and team are
shown in Fig. 2. Among the four types of tasks, vibro
achieved the best performance in three of them (AVS,
KIS-T, and KIS-V-M), while VISIONE exhibited the
best performance in the KIS-V task category. Therefore,
those performances were awarded 1,000 points in their
respective categories, and all other teams were scored
proportionally. The overall score, as shown in Table 1,
is the sum of these four scores per team.

Fig. 3a shows the number of correct and incorrect
submissions per team for the three known-item search
task types. vibro was the only team with seven correct
submissions in the KIS-T category, making only two
incorrect submissions along the way. For visual KIS
tasks based on the V3C dataset, VIREO made the
most correct submissions with six, followed by several
other teams with five correct submissions each. However,
VISIONE was the only team that managed to have
five correct submissions without making an incorrect
one. For the visual KIS tasks using the MVK dataset,
vibro, VISIONE, and vitrivr-VR managed to make
six correct submissions without any incorrect ones each.

The submissions manually judged for the AVS tasks
are shown in Fig. 3b per team and status. VIREO
made the most correct submissions, as well as most
of the submissions in total. vibro made the second
highest number of correct submissions across all tasks in
this category but far fewer incorrect ones than VIREO,
resulting in a higher total score.

The scoring function for the three types of KIS tasks
considers not only the number of correct and incorrect
submissions per task but also the time in which the
correct submission is made. Fig. 4a shows the time in
minutes until the first correct submission was made,
grouped by team and task type. In comparison, Fig. 4b
shows the time until the first submission, regardless of
its correctness. It can be observed that the teams with a
higher total score not only managed to find the correct
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FIGURE 3: Distribution of correct and incorrect sub-
missions for KIS tasks (a), and correct, incorrect, and
undecidable submissions for AVS tasks per team (b).

result for more tasks but also did so more quickly than
others. This difference in time, for example, explains
the difference in scores between vibro and VISIONE
in the KIS-V-M tasks, despite both teams having the
same number of correct submissions across all tasks, as
can be seen in Fig. 3a.

The progression of the total normalized scores per
team can be seen in Fig. 5a. Significant jumps occur
every time a task from a new category (KIS-T, KIS-V,
KIS-V-M, or AVS) is solved, as the scores are normalized
to 1000 points within any category. The figure illustrates
that while there are apparent differences in performance
between certain teams, others performed very similarly
and remained close in terms of total score throughout
the entire evaluation. The evolution of the system ranks
in the competition leaderboard, derived from these score
developments, are shown in Fig. 5b. Interestingly, while
the two highest-scoring teams changed places after the
9th task and remained stable with respect to their

ranking until the end of the evaluation, this is not the
case for the teams with ranks 3 to 7.

B. ANALYSIS OF PERFORMACE IN KIS TASKS
In this section, we aim to gain deeper insights into how
each system performed in KIS tasks by conducting an
in-depth analysis of the logs collected by each team
during the competition. These logs, structured in JSON
format, contain essential information such as the team
identifier, user identifier (when available), timestamp,
query description, and a list of retrieved items for that
particular query ordered by rank.

After a preliminary analysis of the available logs, it
turned out that not all the teams had usable logs due to a
heterogeneous set of problems (e.g., unrecoverable times-
tamps, incomplete records due to logging system fail-
ures, etc.). Teams with unrecoverable logs are excluded
from the following analysis. Although many of the top
systems correctly logged results for the tasks related to
both the V3C and MVK datasets, the only one that
presented dataset-specific logging problems was Verge,
which had unrecoverable MVK logs. Despite this issue,
we opted to include Verge in the analysis, resulting in
a final pool of seven teams: vibro, VISIONE, VIREO,
vitrivr-VR, CVHunter, vitrivr, and Verge. No-
tably, these seven systems also correspond to the top
seven best-performing teams, according to the global
competition leaderboard.

1) Log Pre-processing
A thoughtful collection and analysis of the logs was
performed to ensure that all the results of the different
teams were comparable despite the strong heterogeneity
of the logs.

Logs were retrieved directly from the DRES server
for some systems like Verge, VISIONE, and vitrivr,
while logs for other systems were obtained directly
from the authors who saved them locally, including
CVHunter, vibro, VIREO, and vitrivr-VR. The
first step was to ensure that locally collected logs
complied with the DRES format and that timestamps
were consistent and synchronized with DRES local time.
Records that did not fall into an active task were filtered
out to ensure that only relevant actions were considered
in the analysis. Due to factors beyond direct control,
such as network problems or logging subsystem failures,
a limited number of logs may be incomplete or not
directly comparable.

It is important to note that different teams
logged the retrieved results up to different maximum
ranks. For example, VISIONE, vibro, Verge, and
CVHunter ranked the first 10K results, vitrivr and
vitrivr-VR ranked the first 5K, and VIREO ranked
the first 1K only. Moreover, for specific queries, the
maximum rank may be even lower (for example, when
computing the intersection between two result sets
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FIGURE 4: Distribution of time until the (first) correct submission per team and task type (a), and distribution of
time until the first submission per team and task type (b).
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FIGURE 5: Development of total normalized scores per team over time (a), and team ranking over time (b).

to work out temporal queries). Additionally, the time
units logged vary between teams. In particular, for
the V3C dataset, vibro, CVHunter, and VISIONE
logged frames, while Verge, vitrivr, and VIREO
logged segments (pre-defined shot IDs). For the MVK
dataset, VIREO logged frames instead. To overcome this
heterogeneity in logging units, we convert all temporal
information into a physical-time format (seconds from
the start of the video).

Despite these potential sources of errors, we consider
that this level of uncertainty is sufficient to evaluate the
team’s browsing and retrieval capabilities. It is worth
noting that during the competition, a live judge had
the discretion to manually accept submissions from the
same shot that fell just outside (less than 3 seconds)
the KIS ground truth segment boundary. However, since
such occurrences were rare, the original official ground

truth was used for the subsequent analysis.

2) Comparison of system’s retrieval effectiveness
The table in Fig. 6 presents the retrieval effectiveness of
the various teams for both the V3C and MVK datasets,
focusing on the best rank and best time at which the
correct shot was found during the search. In particular, it
includes the best-achieved rank of a correct item (either
frame or shot) with the corresponding time indication
(in seconds) from the start of the task, as well as the
time of the correct submission.

This analysis was calculated not only at the level of
the whole team but at the level of the specific user who
used the tool since mixing the different users who used
the tool may cause some unfair comparisons. Therefore,
we report the results from the best user only, where
the best user was identified as the one among the two
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      V3C MVK

      T 1 T 2 T 3 T 4 T 5 T 6 T 7 V 1 V 2 V 3 V 4 V 5 V 6 M 1 M 2 M 3 M 4 M 5 M 6

vibro

correct frame/shot
rank 1 1 12 13 4 16 - 1 660 54 10 22 12 8 4 6 5 41 3

tf 28s 6s 277s 140s 104s 21s - 37s 17s 44s 21s 30s 280s 16s 30s 15s 94s 23s 11s

correct video
rank 1 1 12 13 1 16 1 1 19 2 10 1 2 8 1 3 5 41 1

tv 28s 6s 277s 140s 79s 21s 23s 37s 29s 29s 21s 39s 297s 16s 30s 15s 94s 23s 11s

correct submission tcs 37s 26s 395s 155s 150s 29s 193s 44s 53s 60s 26s 45s - 27s 46s 24s 211s 53s 23s

VISIONE

correct frame/shot
rank 1 1 1 16 1 1 4 4 - 2 24 19 224 6 80 17 33 27 2

tf 26s 65s 384s 76s 88s 23s 64s 16s - 26s 18s 62s 298s 23s 205s 12s 245s 19s 37s

correct video
rank 1 1 1 16 1 1 4 1 106 1 24 1 2 4 80 17 33 27 1

tv 26s 59s 384s 76s 88s 23s 64s 16s 87s 26s 18s 65s 163s 23s 205s 12s 245s 19s 12s

correct submission tcs 65s 76s - 111s 100s 52s 95s 25s 112s 34s 25s 72s - 76s 254s 27s 266s 51s 44s

VIREO

correct frame/shot
rank 6 141 100 20 201 5 - 185 - 40 141 - - 132 78 216 188 198 5

tf 137s 409s 53s 187s 50s 24s - 17s - 13s 32s - - 16s 20s 16s 101s 219s 7s

correct video
rank 1 141 64 20 6 5 1 50 77 1 16 6 20 26 78 40 188 198 4

tv 20s 409s 280s 187s 91s 24s 176s 22s 223s 13s 15s 36s 146s 16s 20s 72s 101s 219s 7s

correct submission tcs 166s - - 253s 122s 311s 191s 49s 260s 34s 46s 178s 197s 43s 110s 101s 183s - 11s

vitrivr-VR

correct frame/shot
rank 7 14 - - - 4 - 189 - - - - - 105 12 135 - 546 1

tf 27s 81s - - - 34s - 132s - - - - - 13s 161s 40s - 66s 16s

correct video
rank 2 14 4 64 3 3 2 62 143 32 3 37 24 99 12 49 171 546 1

tv 85s 81s 40s 395s 130s 34s 39s 132s 39s 33s 119s 26s 83s 15s 161s 40s 215s 66s 16s

correct submission tcs 213s - 93s - 179s 53s 88s 171s 97s 39s 126s 47s - 38s 270s 62s 265s 102s 26s

CVHunter

correct frame/shot
rank 38 4 6 63 4 1 74 339 152 6 299 12 151 10 13 1 359 1 9

tf 268s 22s 317s 350s 89s 102s 38s 275s 96s 40s 57s 15s 34s 98s 67s 20s 241s 31s 10s

correct video
rank 1 4 6 40 3 1 2 21 152 6 99 12 10 1 1 1 148 1 9

tv 268s 22s 317s 350s 95s 102s 51s 275s 96s 40s 57s 15s 34s 98s 67s 20s 255s 31s 10s

correct submission tcs 345s 103s - - 106s 142s 66s - - 50s - 52s 68s 111s 83s 28s - 39s 14s

vitrivr

correct frame/shot
rank 4 4 2 289 1 81 22 65 - 40 43 165 31 200 24 6 - 16 1

tf 23s 78s 32s 88s 110s 26s 39s 20s - 37s 135s 140s 43s 15s 201s 179s - 38s 16s

correct video
rank 2 4 2 7 1 81 1 30 202 1 43 12 31 46 24 6 641 16 1

tv 47s 78s 32s 88s 110s 26s 39s 20s 133s 31s 135s 140s 43s 21s 201s 179s 219s 38s 16s

correct submission tcs 94s 219s - 115s 116s 63s 50s 68s - 55s 177s - 82s 80s - 196s - 56s 22s

Verge

correct frame/shot
rank 3 79 638 132 39 3 - 518 - 393 82 122 9

tf 40s 160s 289s 345s 271s 131s - 201s - 18s 55s 65s 204s

correct video
rank 3 79 124 132 14 3 25 17 86 2 82 122 2

tv 40s 160s 210s 345s 369s 131s 27s 201s 33s 25s 55s 65s 120s

correct submission tcs 281s - - 356s - 180s 115s 222s 124s 39s 153s 90s -

FIGURE 6: The table reports for each system with logs (i) the best-achieved rank of a correct item (frame or video
shot); (ii) the time tf in seconds when the best ranked correct item was retrieved; (iii) the best ranking of any
frame/shot of the correct video (but not necessarily the correct video segment); (iv) the time tv in seconds when
the best-ranked video frame/shot was retrieved; (v) the time tcs of the system’s correct submission. Red values are
for the best-detected ranks of the target video if the correct segment was not present in the logged result for a task.
Green cells and Yellow cells show the best achieved correct item and video with a rank less than or equal to 10,
respectively. Red cells indicates browsing failures when a correct item was in the first 1,000 results but was not
submitted. Orange cells are other browsing failures when the correct video was present – but no correct frame or
shot was present – and no correct submission was made.
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(b) Visual KIS (V3C)
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FIGURE 7: Best rank of correct items appearing in result logs, for both MVK visual KIS tasks (a), V3C visual KIS
tasks (b) and V3C textual KIS tasks (c).

that, for that particular task, obtained – ordered by
decreasing importance – (i) the best shot rank, (ii)
the best video rank, (iii) the shortest time when the
best shot was retrieved, (iv) the shortest time when the
best video was retrieved. Notice that we can distinguish
between the two users from the team logs, but we miss
the information about which user submitted the correct
item. For this reason, we cannot define the best user as
the one who submits the correct result, although it was
a reasonable choice.

Examining the overall table, we observe that the first
two teams, vibro and VISIONE, consistently achieved
the best correct frame/shot within the first ten results
in the majority of tasks (10 out of 19), and vibro
achieved the best result on the challenging MVK dataset
(in 5 out of 6 tasks). Furthermore, we notice a consid-
erable variation among teams regarding the percentage
of tasks for which the correct shot rank (or even video
rank) is less than ten. Interestingly, this percentage
does not always align with the ranking obtained in
the final leaderboard. For example, although VIREO
and vitrivr-VR (ranked 3rd and 4th, respectively)
successfully retrieved the correct video within the first
ten results in almost 40% of tasks, they achieved the
correct shot within the first ten results less frequently
than CVHunter or vitrivr (ranked 5th and 6th).
This discrepancy might be attributed to two factors:
(i) users manually searching for the correct shot within
the correct video, allowing these systems to compensate
for possible retrieval failures with effective browsing
abilities, or (ii) interfaces that group results by video,
enabling users to quickly locate the correct item within
the first few videos with minimal scrolling.

The teams that experienced significant browsing fail-
ures, wherein the correct shot was present in the result
set, but users were unable to locate and submit it within
the allotted time, were CVHunter and Verge.

Despite the inherent challenges posed by the novel
MVK dataset, characterized by highly redundant and
noisy video content (involving moving cameras in un-
derwater environments), all the teams demonstrated
good performance, with a team-wise average percentage

of incorrect submissions of 13% (only four incorrect
submissions out of a total of 30).

In Fig. 7, we also report the best shot rank in the
form of a scatterplot. Unlike the results reported in
Fig. 6, we separated the two users and used the real
user IDs instead of the calculated best and second
best. This plot helps to understand if some users are
noticeably better at querying their system. Note that
Verge is not included in this figure due to limitations
in its logs, which do not allow for an exact distinction
between the two system users. In the V3C data set,
the distributions of the best shot rank among the two
users seem to intersect slightly for all the teams in the
Textual KIS tasks, while more noticeable differences are
visible in the Visual KIS tasks. We emphasize that this
is just a hypothesis provided that the available data
are limited by the VBS evaluation style (see Section
V). On the MVK dataset, it appears that most teams
have one user outperforming the other. This can be a
direct consequence of the challenges introduced with the
novel MVK dataset, which probably requires different
searching and browsing strategies that are still not well
established, therefore producing high variance inside the
teams.

3) Browsing efficiency
The time elapsed between the correct submission and
the first appearance of a correct video in the logged
result set is depicted in Fig. 8. We report the results
for both V3C and MVK datasets, including the results
from both users. It is important to note that these
graphs provide an estimation of the actual browsing
time, considering that a correct submission may have
been made by inspecting the video rather than the top-
ranked frames/shots. Additionally, the user who first
retrieved a correct item may not be the same person who
submitted the final correct answer, as this information
is not always available.

Visual KIS tasks for both V3C and MVK datasets(in
Fig. 8b and Fig. 8a) generally have low variance and a
slight slope. The low variance of the fit indicates an effec-
tive positive correlation between the rank of the initial
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(c) Textual KIS (V3C)

FIGURE 8: Relation between the rank of the first occurrence of a video in the result logs and time delta to correct
submission, for visual KIS on MVK (c), and visual (a) and textual (b) KIS on the V3C dataset. The black dash-dotted
line represents the duration of the task. NCS stands for Non-Correct Submissions and corresponds to all the correct
frames found in the result logs that were not submitted correctly (either due to running out of time or incorrect
submissions). The blue line is found by linear regression and is accompanied by the 95% confidence intervals.
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(b) Visual KIS (V3C) - V5
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(c) Textual KIS (V3C) - T3

FIGURE 9: Browsing storyline for some of the KIS tasks. We report the browsing storyline only for the best user,
indicating the correct submission with big hexagons and the wrong submissions with crosses.

result and the time of correct submission. Additionally,
the slight slope suggests that for Visual KIS tasks, most
of the users were able to submit the correct result even
if the first occurrence of the shot/frame in the logs had
a high rank.

A different scenario occurs with the Textual KIS tasks
in Fig. 8c, where there are cases in which the correct
item is found within the first ten results, but the users
cannot find it within the first 100 seconds, and in a
particular case, vitrivr cannot correctly submit it.
This evidences the intrinsic difficulty in Textual KIS
tasks, where the semantic gap between texts and images
makes searching and browsing more challenging.

In Fig. 9, we also report the temporal evolution of
the video rank for all the teams throughout particular
tasks. Note that these plots show changes in rank only
when information appears in the logs. Therefore, the flat
line between two consecutive changes in rank is a loose
representation of reality. The rank is also changing due
to some unreported browsing actions performed by the
team during the “flat line" zone. Despite these shortages,
these graphs provide valuable insight into the results
already reported in Fig. 6. For example, while there are
tasks in which most of the teams retrieve results after the
first query formulation (Fig. 9b), there exist other more
complex tasks (like the KIS-T task in Fig. 9c) in which

the video rank oscillates broadly until some teams can
retrieve the correct video within the first ten results after
more than 250 seconds. At this point, due to lack of time,
most teams fail to submit correctly, with vitrivr and
VISIONE failing after finding the correct video in the
2nd and 1st positions, respectively. These plots strongly
underline the importance of interactive search for solving
the proposed tasks.

4) Analysis of user queries
In this section, we conduct a detailed examination of the
types of search queries formulated during the competi-
tion and assess their level of success. Our specific focus
is directed toward the integration of joint text-image
embeddings and how these embeddings evolve with each
reformulation of the text queries.

For these investigations, it is imperative to have
access to log data that includes both the query type
and the actual formulated query. Among the teams
examined, only the log data from vibro, VISIONE,
vitrivr-VR, CVHunter, and Verge are considered
suitable for our research. Consequently, this section
exclusively emphasizes these five teams. It should be
noted that users associated with the team Verge sub-
mitted their data using identical user IDs, making it
unfeasible to distinguish between user 1 and user 2 in
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TABLE 3: Percentage of how many queries were text
and how many were other query types. The category
“Text+Temporal” indicates when two or more text
queries are used together to perform a temporal search.

query type usage

Team Text Text+Temporal Other queries

vibro 46.6% 6.8% 46.6%
VISIONE 58.3% 38.0% 3.7%
vitrivr-VR 94.5% 5.5% 0.0%
CVHunter 54.4% 10.1% 35.5%
Verge 88.3% 0.0% 11.7%

subsequent analyses. Additionally, in our analysis, we
removed duplicate queries from the same team and user
when these duplicates were caused by logging problems
or when a user had submitted the same search query
multiple times.

Table 3 compares the most frequently used query
types. It becomes evident that most teams have primar-
ily employed text-based searches using joint embeddings.
Other queries that are not text-based are often solely
image-to-image searches, except for a filtering query
by Verge. CVHunter and vibro are the only two
teams that utilize content-based image retrieval more
frequently, with vibro achieving an almost 50:50 ratio.
Regarding text queries, VISIONE was the team that
used them most often in combination with temporal
searches.

In Table 4, we compare the average performance
of text queries, text queries used in combination with
temporal search, and all other query types per user.
The user column represents the first and second users
in each team’s log files. The Top-k columns indicate
the percentage of queries for which the target shot
appeared in the Top-k results. A dash (“-”) denotes that
no searches of the respective query type were conducted.
The “query / min” column represents the mean number
of queries conducted per minute for a particular query
type and user. Since a task is considered completed for
a team as soon as one of the two team users submits a
correct result, we computed the individual user’s queries
per minute for a given task by dividing the time it
took the team to submit the correct result (or the
total duration of the task if unsolved) by the number
of queries made by that individual user within that
time frame. Additionally, the average word count and
character count (query length) are provided for text
queries.

When analyzing text-based queries only, there are no
significant differences between team users in terms of
queries per minute. Deviations are mainly due to longer
text queries, more frequent use of temporal queries (2nd
user of VISIONE), or, in the case of CVHunter, the

utilization of other query types. The two users within
a system seem to respond equally quickly, except the
second user from VISIONE, triggering twice as many
queries as their first user. This discrepancy might arise
from the possibility of sending multiple similar queries
(such as correcting spelling or punctuation errors, to
which text-to-image-based embeddings are particularly
sensitive). The relatively low number of queries in
vitrivr-VR can be attributed to the slower process of
inputting queries in the virtual reality user interface, as
the system primarily emphasizes browsing functionality.

Furthermore, there appears to be a slight correlation
between the number of words per query or the query
length and the ranking of the target shot. In each team,
the user with longer search queries achieved better Top-k
rankings. This can be attributed to CLIP’s capability to
process detailed written information, thus enhancing the
search results. The results are not comparable between
teams due to the use of different CLIP models. Neverthe-
less, a more in-depth analysis of the relationship between
query length and the ranking of correct results for both
users within a team indicates that there isn’t a clear-cut
correlation. In general, for VISIONE and CVHunter,
longer queries tend to achieve better rankings for cor-
rect shots than shorter queries. However, systems such
as vibro, vitrivr-VR, and Verge exhibit a more
balanced distribution in this regard.

The Top-100 values for the type of text query among
different users in teams vibro and VISIONE are quite
similar, suggesting that their text search abilities are
also fairly comparable. vibro’s slightly superior rank-
ing in the competition could potentially be attributed
to the application of other query types and browsing
functionalities.

For the “Other” query type rows, only vibro and
CVHunter can be considered, as other teams rarely em-
ployed anything other than text queries, and their Top-
k values for other query types might contain outliers.
Both vibro and CVHunter use search-by-example
queries. Although their average results for Top-10, Top-
20, and Top-50 are inferior to their text results, the
figures for Top-100 and beyond are relatively similar.
Therefore, both systems demonstrate the ability to
perform context-based image searches that effectively
complement text-based queries. Please note that there
is a dependency between the rows corresponding to
different query types, as simple tasks are usually solved
by an initial text query, whereas other query types are
commonly employed in subsequent steps to address more
complex tasks.

In the following, we take a closer look at the joint text-
image embeddings of the text queries used by all five
teams, each employing some form of CLIP embedding.
While the specific type of embedding may vary among
the teams (refer to Section III-A), these embeddings
were not stored in the logs. To facilitate comparison, we
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TABLE 4: Query statistics per team member and query type averaged over all KIS tasks. The queries per minute,
average number of words, and string length of textual queries are depicted for each user. Additionally, top-k denotes
the percentage of queries for which the target shot was within the first k results.

team user query
type

# queries
(usage)

query
per
min

words
per

query

query
length top10 top20 top50 top100 top200

vibro 1st Text+Temporal 3 (4.1%) 0.1 13.0 61.0 0% 66.7% 100.0% 100.0% 100.0%
Text 34 (45.9%) 1.3 9.7 51.0 14.7% 17.6% 29.4% 35.3% 44.1%

Other 37 (50.0%) 1.4 - - 5.4% 13.5% 27.0% 35.1% 37.8%
2nd Text+Temporal 8 (9.2%) 0.3 8.0 43.0 0% 0% 0% 0% 0%

Text 41 (47.1%) 1.5 7.0 37.3 12.2% 22.0% 29.3% 34.1% 39.0%
Other 38 (43.7%) 1.4 - - 2.6% 10.5% 21.1% 28.9% 36.8%

VISIONE 1st Text+Temporal 10 (21.3%) 0.4 32.8 173.9 10.0% 30.0% 60.0% 80.0% 90.0%
Text 37 (78.7%) 1.5 17.1 87.9 10.8% 13.5% 24.3% 29.7% 37.8%

Other - - - - - - - - -
2nd Text+Temporal 52 (45.2%) 2.1 19.6 98.6 13.5% 17.3% 25.0% 30.8% 46.2%

Text 58 (50.4%) 2.3 10.3 52.9 10.3% 17.2% 22.4% 25.9% 32.8%
Other 5 (4.3%) 0.2 - - 20.0% 20.0% 40.0% 40.0% 60.0%

vitrivr-VR 1st Text+Temporal 2 (3.6%) 0.1 14.5 78.5 0% 0% 0% 0% 0%
Text 54 (96.4%) 1.7 7.1 34.9 7.4% 13.0% 14.8% 18.5% 22.2%

Other - - - - - - - - -
2nd Text+Temporal 3 (8.6%) 0.1 8.0 40.0 0% 0% 0% 0% 0%

Text 32 (91.4%) 1.0 5.2 27.9 3.1% 3.1% 3.1% 3.1% 12.5%
Other - - - - - - - - -

CVHunter 1st Text+Temporal 22 (21.2%) 1.1 15.2 79.7 31.8% 36.4% 40.9% 45.5% 50.0%
Text 54 (51.9%) 2.7 10.4 57.4 11.1% 11.1% 13.0% 20.4% 29.6%

Other 28 (26.9%) 1.4 - - 10.7% 10.7% 14.3% 25.0% 35.7%
2nd Text+Temporal 1 (0.8%) 0.0 9.0 46.0 0% 0% 0% 0% 0%

Text 70 (56.5%) 3.5 7.0 40.6 4.3% 5.7% 8.6% 12.9% 24.3%
Other 53 (42.7%) 2.6 - - 1.9% 7.5% 13.2% 18.9% 20.8%

Verge 1st
&

2nd

Text+Temporal - - - - - - - - -
Text 109 (85.8%) 3.9 5.0 28.3 0.9% 1.8% 3.7% 5.5% 30.3%

Other 18 (14.2%) 0.6 - - 11.1% 11.1% 11.1% 16.7% 16.7%

uniformly generated new embeddings using vibro’s fea-
ture vector pipeline, as detailed in Section III-A. Then,
we focused on the cosine distances between embeddings
of individual queries provided for the same task.

Fig. 10 shows the mean pairwise cosine distances
separately for each task and each team, as well as
aggregated for task types and teams6. Several interesting
observations can be made from Fig. 10. Firstly, the
mean embedding distances are smaller for textual KIS
tasks than for visual ones, especially V3C datasets.
We attribute this difference to the fact that in textual
KIS tasks, the scene description serves as a central
point from which all users start developing their queries.
In contrast, in visual tasks, many possible visual cues
are causing higher variance in their respective textual
descriptions. Furthermore, the higher variance within
the searched scenes in V3C compared to MVK could
further explain the difference between the two datasets.

6We only included points where at least two queries per team
were available, and each pair of queries was considered with equal
weight when calculating averages.

Secondly, there is a difference in the mean query dis-
tances per team. On average, from the least to the
most diverse queries, the ordering is VISIONE (0.47),
vibro (0.50), CVHunter (0.56), Verge (0.64), and
vitrivr-VR (0.68).7 The same order of teams is also
achieved if we consider the queries of individual users
separately. Note the correspondence between decreasing
query distances and increasing overall team scores. We
can assume that the longer the task remains unsolved,
the more distant queries are produced by the team
members.

To corroborate this hypothesis, we focused on the
sequences of text queries constructed by individual users
for each task.8 Table 5 presents the mean distances of
the first text query provided by a user to a given task

7Note that (i) both vitrivr-VR and Verge had missing data
for some tasks, (ii) both VISIONE and vibro had significantly
more compact queries than CVHunter on average (t-test p-value
< 2.4e-6)

8In the subsequent analysis, we only considered sequences of
five or more queries. We removed the results of the Verge team
as we could not reliably identify individual users in their logs.
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FIGURE 10: Mean pairwise query distances w.r.t. CLIP embedding features and cosine distance for individual teams
and tasks. The average distances for each team and task type are depicted as dotted lines, while average distances
w.r.t. all teams for specific task types are depicted as dashed lines.

TABLE 5: Comparison of mean distances in sequences of
text queries. For both the distance w.r.t. CLIP embed-
dings (CLIP) and Levenshtein distance. The first line
depicts distances from the first query, while the second
line depicts distances to the previous query.

Q2 Q3 Q4 Q5

CLIP
first query 0.41 0.53 0.57 0.58
previous query 0.41 0.40 0.34 0.33

Levenshtein
first query 0.26 0.38 0.42 0.47
previous query 0.26 0.24 0.18 0.19

and the subsequent ones (i.e., Q1 vs. Q2, Q1 vs. Q3,
etc.) as well as the distance between each query and
the previous one (i.e., Q1 vs. Q2, Q2 vs. Q3, etc.). It
is apparent that while the distances between subsequent
queries remain roughly the same (or slightly decrease),
the distance from the first query gradually increases.
To verify these findings, we also conducted the analysis
using the Levenshtein distance between query strings,
yielding similar observations. The current data show
that the distance to the initial query could converge9

around the fifth query, but additional data with longer
sequences would be necessary to verify this assumption.

Finally, we focus on what is the source of diversity in
per-team text queries. For this, we compared the mean
differences of queries for the same task within each user,
between queries of both users from the same team, and
between queries of users from different teams. The mean
distance between queries of the same user was 0.46, the
mean distance between queries of different users of the
same team was 0.61, and the mean distance between

9I.e., subsequent queries on average are not more distant from
the first one than the previous ones.

TABLE 6: AVS tasks conducted during VBS 2023.

Task Hint

a1 Find indoor shots of three or more people sitting
around the same table with food on it.

a2 Find shots of only one person riding a horse or riding
a horse-drawn cart, without other people visible.

a3 Find shots of an adult person running in an
(sub-)urban street. Cars may be visible, but no other
people are walking or running.

a4 Find shots of one or more adult persons holding,
releasing, throwing, or playing with a balloon of any
shape. Balls of any kind are not balloons; air balloons
are not included.

a5 Find shots showing at least one person singing and at
least one drummer (not necessarily playing the drums
at that moment).

a6 Find shots taken by a paraglider or parachutist,
where their shadow (the glider and/or the person) is
visible on the ground or water.

a7 Find shots showing a bar chart (vertical or horizontal
bars).

queries of users of different teams was 0.64. We also
checked for differences between individual teams, but no
notable exceptions appeared. We interpret these results
as follows. Individual users tend to be consistent in how
they construct queries throughout the search task, with
minimal variation. While the search tool itself also seems
to play some role in the inter-query differences, users
themselves (even those from the same team) are the
primary source of diversity in query construction. This
finding may support the argument for modifying the
VBS competition to ensure more uniform user sampling.

C. ANALYSIS OF PERFORMANCE IN AVS TASKS
In this section, we delve into the setup, evaluation, and
analysis of the AVS tasks. Unlike the KIS task, the cor-
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FIGURE 11: AVS: Ratios of the teams’ first correct
submission per task. When multiple teams submit the
same segment, this contributes to each team’s ratio
individually

rect answer to an AVS task is not unique. Instead, par-
ticipants are tasked with finding as many relevant results
as possible based on a brief textual description (see Table
6). Due to the massive dataset volume, it is unfeasible
to label everything for ground truth. Therefore, real-
time evaluation during the competition is conducted by
experienced judges using the DRES evaluation server.
Since there is heterogeneity in the submission units used
by different teams (e.g., single frame number, specific
time of the video, or a pre-defined video shot identifier),
in DRES each submission is mapped onto pre-defined
reference shots that will be presented to the judges for
their evaluation. As detailed in Section II, penalties are
applied for incorrect submissions to prevent excessive
arbitrary submissions. Additionally, the evaluation met-
ric accounts for diversity, as submitting different correct
shots of the same video does not increase a team’s score.
Moreover, a video submission that is distinct from other
teams’ submissions can have a greater impact on the
evaluation compared to a video that is commonly found
by most teams. Specifically, as shown in Eq. (1), each
team’s score is divided by the total count of correct
videos among all teams’ submissions.

Fig. 11 compares the share of the first correct submis-
sions from different teams in each task. We only count
the ratio of the first correct submission, as it contributes
the most to the AVS score (see Eq. (1)). Investigations
have shown that even though the newly introduced
scoring function results in diminishing returns, teams
have submitted from the same video. However, since the
scoring respects the diversity of videos found per team,
the submission of the same video by multiple teams
contributes independently to their shares. Each team
did not consistently submit a similar share in different
AVS tasks. For example, although VIREO tends to have
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FIGURE 12: Kernel density estimate for AVS submis-
sions. When multiple teams submit the same segment,
this contributes individually.

the highest number of videos in most tasks, its number
of submissions is significantly less in task a2. A similar
situation can also be observed for vibro in task a2 and
a4. Conversely, VISIONE dominates the share in task a2,
despite having a relatively lower quantity of submissions
in the other tasks. This fluctuation in a team’s sub-
mission share can be attributed to various factors such
as the features utilized, methodologies for composing
queries, and search strategies employed. Furthermore,
the teams with the highest number of video submissions
in the AVS tasks, namely VIREO and vibro, achieved
the top two highest AVS scores. This underscores the
significance of the number of submissions in the evalua-
tion process. Furthermore, although VIREO submits the
most videos, its overall score is less than vibro as they
submit more incorrect results, which can be observed in
Fig. 3b.

In addition to the variation in submission density
among different teams, submissions are not evenly dis-
tributed across the time dimension. Fig. 12 shows the es-
timated submission density during the competition time.
In most tasks, the submissions reach their peak around
100 seconds, indicating that participants have typically
formulated their queries and submitted the top-ranked
results by this time. As the competition progresses, while
participants continue to find new results, the density
of submissions decreases. After the peak submission
period, participants often need to revise their query,
change their search strategy, and delve deeper into the
ranked list to uncover additional results. In some cases,
the submission peak occurs later in the competition. For
example, in task a5, it takes nearly 200 seconds longer
to achieve the submission peak, reflecting the greater
challenge in formulating effective queries to optimize the
ranking of matched videos.

The difficulty of an AVS task is reflected not only by
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FIGURE 13: Ratios of the overall correct and wrong
submissions per task (bar chart, left y-axis) and the time
cost to submit the first (correct) result (scatter chart,
right y-axis). Since only the first correct submission
from a video is evaluated, both the correct and wrong
submissions were divided into valid and not-evaluated
(NE) submissions. The queries in the x-axis are in the
increasing order of the correct submission ratio.

the hardness of composing a suitable query but also by
the difficulty of understanding the query and discerning
the results. Fig. 13 presents two metrics to assess task
difficulty. The bar chart shows the ratio of correct and
incorrect submissions in each AVS task, with the x-
axis indicating the tasks sorted in increasing correctness
ratio. A lower correct ratio is mainly attributed to
indistinguishable results. In addition, as is shown in
Eq. (1), if all submissions from a team referring to
the same video are incorrect, they are all evaluated
(with a penalty) in the final score, but if at least one
correct submission exists, then only the submissions
before the first correct submission from that video are
evaluated. Therefore, we categorized both correct and
wrong submissions into evaluated and not evaluated
(NE) submissions to showcase the ratio of valid sub-
missions. This categorization reveals that the majority
of submissions come from distinct videos, while between
17% to 30% of correct submissions and 5% to 20% of
incorrect submissions are not evaluated across queries.
The difficulty in solving task a2 and task a3 arises
from quantity and negative constraints, as shown in
Table 6. The negative constraint “without other people
visible” (a2) and “no other persons walking or running”
(a3), and the quantity constraint, “only one person”
(a2), require participants to check the entire video
segment and perform the identification painstakingly.
Participants are likely to submit a video segment solely
according to its keyframe while overlooking the incorrect
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FIGURE 14: AVS: Time judges needed to render a
verdict

frames in the rest of the video segment. On the other
hand, the scatter chart presents the time until the first
(correct) submission by the first and 50% of the teams.
This metric reflects the difficulty in understanding the
query, composing a draft query, and submitting the first
(correct) result. The y-axis on the right-hand side of
Fig. 13 indicates the corresponding time in seconds. The
lower the position of a scatter point, the more time is
spent. The trends of difficulty level by the two different
metrics agree with each other. An exception occurs in
task a4, where the longest query length and the most
complicated query structure (in terms of the depth of
the dependency tree) lead to more time for 50% of teams
to submit their first (correct) result, although the results
are relatively easy to distinguish.

Fig. 14 presents the distribution of judgment time
for each submission in different tasks. The median time
for an experienced judge to give a verdict is around 10
seconds, which is apparently longer than the time for a
participant to submit a video segment. Upon filtering
outliers, there is no significant variation in judging time
among different tasks. Nevertheless, we can still find
that the trend aligns with the difficulty observed in
Fig. 13 when sorting the time to judge in increasing
order, indicating that the difficulty of submitting a video
correlates with the difficulty of rendering a verdict at the
task level.

Table 7 shows the agreement and disagreement be-
tween the judges and the teams. Each cell in the table
represents the fraction #agreement

#disagreement , where #agreement
and #disagreement represent the number of identical
submitted shots judged as correct and wrong, respec-
tively. For instance, in task a2, the red cell showing
0/1 indicates that while no shot was submitted by
seven teams and judged as correct, there was one shot
(item 02964, timed from 226 to 230 seconds) that was
submitted by 7 teams and evaluated as incorrect. This
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Task Number of Teams

1 2 3 4 5 6 7 8 9 10 11 12 13

a1 422/180 108/22 30/2 11/1 1/0 1/0 - - - - - - -
a2 112/117 28/19 21/7 12/0 3/0 3/1 0/1 1/0 - - - - -
a3 76/138 23/11 6/4 0/1 1/0 - - - - - - - -
a4 200/139 54/10 24/2 8/0 5/0 1/0 - - - - - - -
a5 262/195 7/2 - - - - - - - - - - -
a6 231/120 58/5 17/0 10/0 4/0 - 2/0 - - - - - -
a7 127/72 45/2 33/0 15/0 4/0 4/1 2/0 2/0 2/0 2/0 - - -

Red font highlights cases where the fraction is lower than or equal to one (i.e., #agreement
#disagreement ≤ 1)

TABLE 7: Number of submissions in agreement/disagreement between judges and different number of teams.

discrepancy may arise because judges assess the entire
shot, while teams may have viewed or submitted only a
specific frame of the shot. For example, in the case of
video 02964, while half of the shot is correct (showing
only one person riding a horse), the other half contains
several people riding horses, rendering it incorrect. Com-
pared to last year [70], significant disagreement appears
in more tasks, i.e., task a2 and a3. In task a2, seven
teams disagreed with the judgment on one video, while
four teams disagreed on one video in task a3. These
tasks exhibit greater submission difficulty in Fig.13 and
judgment difficulty in Fig.14, which could contribute to
the higher disagreement. Beyond that, the disagreement
is not significant in all other AVS tasks. On the other
hand, we could see that if the description has a very low
potential for misinterpretation (task a7), the majority
of submissions are correct and in agreement with the
judges’ evaluation.

Regarding the newly introduced scoring function, its
overall scores’ rank correlation to the ranks obtained
using the old formula is very high (0.929). Our inter-
pretation of this value is two-fold: a) there would not
have been a significantly different ranking of the teams
using the old formula, and b) the teams’ search strategy
appears unaffected by the scoring. However, since there
is no survey on the strategy, we can only assume the
latter point as the communication of the organizers
during the competition has been for 2022 and 2023 to
“find as many shots as possible”.

V. CONSIDERATIONS FOR FUTURE EVALUATION SETUP
In this section, we suggest re-evaluating the VBS setting
to address certain inherent limitations in its assessment
methodology, which are detailed and discussed below.
Specifically, we compare three alternative options:

• Collaborative Users in a Single Team (VBS 2023
Setting): In this setup, users of the same system
are treated as a single team allowed to collaborate,
and their cooperation contributes to the evaluation
scores. A KIS task is considered completed for a
team when the fastest user in the team submits
a correct result, while incorrect submissions made

by other team members incur penalties affecting
the final score. In AVS, submissions from all team
members are combined and scored collectively, with
only one correct result evaluated per video if mul-
tiple users submit results from the same video. The
winning system is determined by the team with the
highest cooperative score.

• Independent Users Aggregated into a Single Team:
In this configuration, independent users of the same
system are considered a unified team, but direct
collaboration among them is not allowed. Each user
independently attempts to solve tasks, and the final
score for a task is calculated as the average of
individual user scores. The winning system is the
team with the highest score.

• Independent Users as a Distinct Team: In this sce-
nario, each user of a system is treated as a distinct
team, with no collaboration or score aggregation
among independent users. The VBS competition
is won by the system with the highest-performing
independent user.

The primary drawback of the VBS 2023 Setting is that
once one user solves a task, the entire team stops search-
ing, resulting in the loss of valuable information for
analysis. Moreover, it is unclear if there is an outstanding
user within a team, as individual performances are not
discernible. Additionally, while this setting allows for the
evaluation of cooperative systems, it puts systems that
participate with a single user at a disadvantage.

The second and third options share two main advan-
tages: Requiring all users to attempt to solve all tasks
could enhance the competition’s entertainment value
and provide more comprehensive system evaluations.
The second option may seem promising if all teams
could send the same number of users to VBS. However,
ensuring equal participation is challenging and cannot
be guaranteed (e.g., financial constraints, staffing limita-
tions, or other practical considerations). Moreover, some
teams may choose to participate with only their best
user (super-user), potentially limiting the volume of log
data available for analysis. However, there are several
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compelling arguments for the third option:

• Any number of users (with a recommended min-
imum of 2) can participate without notable unfair
effects on the overall system score, allowing for more
extensive data collection for scientific analysis.

• Teams are motivated to have more users, as the per-
formance of the best user is unaffected by additional
team members. Moreover, it is always advantageous
for a team to participate with as many users as
possible as designating one system user as the
“best” before the competition does not necessarily
guarantee that they will ultimately deliver the best
performance.

• Having independent users makes it feasible to ex-
amine whether there is a low or high variance
in the performance of different users within the
same system, which might not be possible in the
other two scenarios analyzed, both of which involve
aggregated scores.

• Identifying and analyzing super-users is more effec-
tive, as their impact on rankings can be assessed
more clearly.

• There is no need to update the current infrastruc-
ture (DRES), though some aggregated visualization
could be added for clarity.

Considering these factors, we recommended adopting
the third option, which has been approved by the VBS
organizing committee for the 2024 edition of the compe-
tition. There are other aspects, however, that require
attention. Improving the clarity of AVS queries and
ensuring consistent logging practices are essential.

Our evaluation revealed that there is often a lack of
agreement regarding the correctness of AVS submissions.
Teams often seem to disagree with judges, and also
judges sometimes disagree with each other. For example,
we could see that the AVS task a3 was misunderstood
by many teams (four teams submitted the same shot,
which was rated as wrong) because it was probably not
entirely clear what “a sub-urban street” is, and whether
“other visible people where really standing or running”
(or whether a marathon participant taking a short break
is still “running”). This is very unfortunate for teams
because incorrect submissions have a severe impact on
the scoring. Clear task descriptions with minimal chance
of misinterpretation, accompanied by visual examples,
can reduce disagreements between teams and judges.

Another consideration for future VBS editions is to
ensure that all participants adhere to comprehensive
and consistent logging practices. Participants should
be explicitly instructed to meticulously save logs of
their systems, encompassing snapshots of results of
all performed queries (at least top-k items), including
query specifications, a practice already adopted by some
teams. Including browsing actions in logs could further
enhance understanding of users’ interactions. However,

non-trivial open challenges need to be resolved first [89].
Additionally, future evaluations should consider col-

lecting specifications of participating systems to high-
light the diverse hardware and computational resources
utilized. This data would offer valuable insights into the
performance and capabilities of these systems, enabling
an analysis of the trade-off between efficiency and effec-
tiveness.

Finally, it is worth noting that before the COVID-
19 pandemic, the competition also included evaluation
sessions with novice users. Unfortunately, these sessions
have been omitted in recent years due to logistical
constraints from remote participation. It is of great
importance to make sure that the next editions of VBS
include evaluation sessions with novices to provide a
more complete evaluation of the usability and perfor-
mance across diverse users.

VI. DISCUSSION AND FUTURE CHALLENGES
Our analysis indicates that teams predominantly relied
on free-text search with joint embeddings, such as those
derived from models like CLIP and OpenCLIP, comple-
mented by result browsing. This approach proved effec-
tive for most KIS tasks. However, while visual KIS tasks
were relatively easy with this type of search, textual KIS
tasks posed greater challenges. Teams often struggled
to formulate text queries that returned relevant results,
with some tasks requiring more than 250 seconds to find
a correct answer – this is clear evidence that content-
based search still suffers from semantic gap when no
visual example is available.

The observed variability in search performance among
teams underscores the need for continued exploration
of diverse search strategies and methodologies. For in-
stance, the best two teams, vibro and VISIONE were
able to find the search item within the first ten results
for 10 out of 19 tasks, while other systems often ranked
the correct item much higher, even though almost all
systems shared the use of the latest CLIP models. This
underscored the importance of complementing CLIP-
based cross-modal search features with other effec-
tive search and browsing functionalities. For example,
VISIONE stood out for its frequent use of temporal
queries to complement textual queries, while vibro
often complemented its textual queries with query-by-
visual-examples. A promising direction is to support
bi-modal queries, where visual and textual queries are
combined to give the user fine-grained control over the
properties of the target item. For example, the emerging
field of Composed Image Retrieval [29] addresses the
problem of retrieving target images that are visually sim-
ilar to a query image but with modifications indicated
by a textual query.

Another finding is that longer text queries often return
more accurate results and that teams try to adapt
their queries until some relevant content is presented
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in the top-k results. Interestingly, the diversity of free-
text queries is relatively low within the same user but
higher among different teams or even different users
within the same team. While different understandings
and formulations of the query are primary reasons for
this, other factors, such as cultural differences, may also
influence query diversity. Understanding the dynamics
of user interaction with search systems, particularly
the iterative adaptation of queries, can provide impor-
tant insights into developing more intuitive and user-
friendly interfaces (e.g., integrating automatic query
suggestions). v-FIRST has been a pioneer in this regard,
being the only VBS system that integrates an LMM-
based suggestion tool to enhance query clarity. Although
its performance did not excel in terms of competition
ranking, the direction taken is promising. Recent ad-
vances in the field of LMMs, with continually improving
performance, suggest that such models have significant
potential in enhancing interactive video search.

There were also significant differences in the number
of issued queries by the team and team members. VR
systems seem to have some drawbacks when it comes
to textual queries [106] (even speech recognition is
challenging due to the noise of other teams), while
remote users with a normal and familiar keyboard (non-
laptop), and a high-performance PC-setting, seem to be
able to produce significantly more queries than mobile
team members on site. However, vitrivr-VR, the sole
VR system in the competition demonstrated promising
potential for video browsing in VR. Despite often lacking
the correct search item in the result set, it successfully
located the correct item through browsing in nearly all
KIS tasks, ultimately achieving a fifth-place ranking.
This highlights the potential of VR user interfaces and
underscores the importance of addressing their inherent
challenges, as this is an emerging and promising area of
research that would enable the creation of more inclusive
and versatile interactive video retrieval platforms.

Notably, teams sometimes failed to find the correct
shot, although the right video (with another shot) was
ranked in their top ten results. This clearly demonstrates
the importance of user interface design. Future develop-
ments should focus not only on refining search engines
but also on creating interfaces that empower users to
inspect and filter diverse types of information efficiently.

VII. CONCLUSIONS
In this paper, we performed an extensive evaluation of
the Video Browser Showdown 2023 (VBS2023), which
took place in Bergen, Norway in January 2023 at
the International Conference on MultiMedia Modeling
(MMM2023). 13 teams from 10 different countries par-
ticipated in this challenging large-scale video search
competition addressing 7 AVS tasks and 19 KIS tasks.
Our evaluation encompassed an examination of the
participating systems, offering an overview of their

methodologies and delineating both commonalities and
distinctive features. Furthermore, we meticulously ana-
lyze system logs containing all user queries and results
during the competition. This analysis offers a compar-
ison of the systems’ performance and characteristics
from various perspectives, including submission speed,
retrieval success, and employed query types. Moreover, it
provided valuable insights into the strengths, challenges,
and future research directions of modern video search.
Overall, despite all the progress in semantic content
understanding, performing specific content search tasks
in large and diverse datasets remains challenging. The
VBS provides a valuable platform to evaluate the true
practical search performance and will continue to extend
its tasks with different test tasks (e.g., question answer-
ing) and datasets (e.g., medical video data).
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